翻訳と辞書 |
Ramanujan theta function : ウィキペディア英語版 | Ramanujan theta function
In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after Srinivasa Ramanujan. ==Definition== The Ramanujan theta function is defined as : for |''ab''| < 1. The Jacobi triple product identity then takes the form : Here, the expression denotes the q-Pochhammer symbol. Identities that follow from this include : and : and : this last being the Euler function, which is closely related to the Dedekind eta function. The Jacobi theta function may be written in terms of the Ramanujan theta function as: :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Ramanujan theta function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|